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Abstract 

We present a computational model exploring goal-directed 
deployment of attention during object tracking. Once selected, 
objects are tracked in parallel, but serial attention can be 
directed to an object that is visually crowded and in danger of 
being lost. An attended object’s future position can be 
extrapolated from its past motion trajectory, allowing the 
object to be tracked even when it is briefly occluded. Using 
the model, we demonstrate that the difficulty of tracking 
through occlusions increases with the number of objects 
because they compete for serial attention.  

Keywords: attention; perception; cognitive model; multiple-
object tracking; visual cognition 

Introduction 
Our visual experience of the world is rich and exhilarating, 
full of a wide variety of objects that move either predictably 
or erratically. Making sense of what we see requires an 
ability to follow these objects over time, sometimes tracking 
two, three, or more at once. The criticality of this capability 
is reflected in the existence of low-level mechanisms in the 
vision system that can follow multiple objects in parallel, 
seemingly without explicit attention. However, when the 
paths of objects intersect or when one object occludes 
another, these mechanisms are insufficient, requiring that 
we attend to an object to disambiguate it from others. 

What guides our attention toward any one particular 
object in the visual field? There is a considerable amount of 
literature that seeks to answer this question by appealing to 
visual salience (Borji & Itti, 2013). That work emphasizes 
contrast effects in the early visual system that draw our eyes 
to regions of fast motion, bright lights, and flashes of color. 
The target phenomenon described by that literature is goal-
free, visual perception—that is, where a person would look 
if told to freely examine an image. The corresponding 
results say little about top-down influences on visual 
attention, such as when a person adopts a goal to track an 
object over time. 

Fortunately, there is a task that lets us study goal-directed, 
visual attention under exactly these conditions. Experiments 
on multiple-object tracking (MOT) have people distinguish 
one or more targets from a larger set of identical distractors 
as they move across an empty background (Pylyshyn & 
Storm, 1988). In these studies, the only identifying 

characteristic of each object is its motion history. As a 
result, the low-level mechanisms that maintain the identity 
of objects in parallel are taxed, which lets researchers study 
their limits and therefore determine the conditions that 
require visual attention.  

We know, for instance, that when targets come close to 
other objects, they tend to draw attention (Iordanescu, 
Grabowekcy, & Suzuki, 2009; Zelinsky & Todor, 2010). 
This effect of crowding does not hold when distractors are 
clustered together, so the goal to track the targets must play 
a role in protecting them from possible confusion with the 
other objects. It also appears that the difficulty of MOT 
increases when multiple targets are crowded simultaneously 
(Srivastava & Vul, 2016). These findings suggest that visual 
attention is deployed serially and can only disambiguate one 
threatened target at a time.  

In this paper, we present a computational model that 
accounts for one of the roles that attention plays in object 
tracking. Our research builds on previous work by Bello, 
Bridewell, and Wasylyshyn (2016) that assumed attention is 
serially deployed to initially encode targets, after which a 
parallel process that does not require attention exclusively 
handles object tracking. In their model, the interaction 
between attention and the tracking goal was limited to 
keeping visual attention on the targets. The model’s ability 
to track targets broke down when the targets’ previous 
positions were insufficient for distinguishing them from 
other nearby objects (e.g., when the objects moved quickly 
or were close to each other). In the updated model presented 
here, the processes for serial shifts of attention are refined 
and contribute throughout the task.  

Specifically, the updated model detects when objects 
flagged as targets are visually crowded and, in response, 
directs attention to them. Sustained attention on an object 
enables the construction of its motion trajectory, which can 
be used to predict its future position. This extra information 
gives the model the ability to follow a target through an 
occlusion event, where another object overlaps or covers the 
target. Because attention is deployed serially, only one 
target can be tracked in this way at a time. As a result, when 
two targets are crowded, they vie for attention and the one 
that is not selected remains in danger of being lost by the 
parallel, tracking process. 



We claim that tracking through occlusion is facilitated by 
goal-directed deployment of attention to the target involved. 
We support this claim by providing a computational model 
of visual attention described in the next section. Briefly, this 
model requires that crowded targets compete for attention 
and its associated computational benefits. To test the model, 
we apply it to stimuli drawn from the work by Luu and 
Howe (2015) showing that people are better at predicting 
target positions from past trajectories when there are fewer 
targets. We find that the model accounts for these results 
and is in accordance with a broader range of findings in the 
literature. 

Computational Model of Visual Attention 
The computational model is implemented using ARCADIA 
(Bridewell & Bello, 2016a), a cognitive system designed for 
exploring the role of attention. The system operates in 
cycles that correspond to 25 ms of activity in human 
perception. On each cycle components, which carry out all 
the computation in a model, place their results in a location 
called accessible content. ARCADIA uses an attentional 
strategy to select one of these results as a focus of attention, 
which directs processing in a subset of components. On the 
subsequent cycle, the components receive sense data (e.g., a 
video frame), accessible content, and the focus of attention 
as input and produce the next collection of accessible 
content as output. 

Like other models built using ARCADIA, this model of 
visual attention consists of a set of components and an 
attentional strategy. Many of the components included in the 
current model were previously described by Bello, 
Bridewell, and Wasylyshyn (2016). Looking at Figure 1, 
these include image segmenter, object locator, object-file 
binder, and vstm (which implements visual short-term 
memory). In the rest of this section, we summarize these 
components, mention changes to object locator, detail the 
new components, and discuss the attentional strategy. 

Beginning at the bottom of Figure 1, image segmenter 
polls a sensor that provides one frame of video input each 

cycle. The component then outputs a set of proto-objects, 
hypotheses for the locations of objects (Rensink, 2000), 
based on closed-contour regions in the frame. For proto-
objects to lead to object representations, they must receive 
attention. To this end, a set of highlighters, described later 
in this section, proposes one or more candidate proto-objects 
for the focus of attention. If ARCADIA focuses on one of 
these candidates, then the object file binder constructs an 
object file, which is based on the ideas of Treisman and 
Gelade (1980) and is a representation that binds together 
any visual features found at the proto-object’s location (e.g., 
color profile, size). If that object file receives attention, then 
the vstm component stores it in memory. 

Improvements to the Parallel Aspects of Tracking 
If tracking objects always required attention, then it would 
take four ARCADIA cycles (100 ms) to go from visual 
input to representing a single object in vstm. To update that 
object’s location would take the same amount of time. Even 
accounting for the ability to pipeline parts of the process, 
two cycles (50 ms) are required for shifting covert attention 
and representing an object. The timing needed to serially 
update the location of multiple objects, which is based on 
evidence from visual search in humans (Wolfe, 2003), is 
unrealistic. Therefore, the model needs a way to track 
objects in parallel.  

To address this need, the model includes tracking 
functionality in object locator. In earlier ARCADIA 
models, this component kept location information up-to-
date by matching object files in vstm to the proto-objects 
nearest to each object’s last known location. This approach 
was inspired by Pylyshyn’s (1989) proposal that roughly 
four objects can be tracked in parallel using visual indices 
and by Dawson’s (1991) work that identified a nearest-
neighbor constraint in apparent motion, which is likely 
related to tracking.  

In this model, we refine object locator to provide an 
account of Dawson’s constraint based on newer results in 
visual processing. This new implementation generates a 
two-dimensional priority map (Fecteau & Munoz, 2006; 
Bisley & Goldberg, 2010), with enhanced regions at each 
tracked object’s last known location and suppressed regions 
around them. Evidence for this treatment of spatial regions 

 
Figure 1. Flow of information between components, both 
bottom-up (black arrows) and top-down (gray arrows). 
Components in bold respond to the focus of attention. 
Components with dashed borders are task-specific. 
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Figure 2: A: An image with eight objects. B: A priority 
map in which four of the objects are tracked. 
 



comes from early work on multifocal attention (Castiello & 
Umiltà, 1992) and center-surround suppression (Tsotsos et 
al., 1995; Desimone & Duncan, 1995). To track objects in 
parallel, each object file in vstm is matched to the proto-
object that most overlaps its corresponding enhanced region 
on the priority map. Figure 2B shows an example of such a 
map with enhanced red and yellow circles and suppressed 
outer green rings. Importantly, if two tracked objects are 
near each other, one object’s suppressed region may overlap 
another object’s enhanced region (see the two lower circles 
in Figure 2B), resulting in a smaller enhanced region and a 
greater chance of a tracked object being lost.1 

Goal-Directed Attention in Tracking 
Adopting a goal to track specific moving objects, or targets, 
alters how attention is deployed. In particular, attention can 
be drawn to a target when there is a risk that the parallel, 
tracking mechanisms could fail for that object. For instance, 
as suggested by Figure 3A, when multiple objects overlap, 
they look like a single proto-object. After those objects 
move apart, it is unclear which one, if any, was previously a 
target. This problem arises because following a target 
through an occlusion event requires more information than 
only its previous location. On these occasions, the model 
uses an attended target’s recent motion history to 
extrapolate its future position in order to track it through 
occlusions. We conjecture that serial attention is required 
for this process because it involves binding trajectory 
information and the corresponding extrapolated position to a 
particular object file. 

Goal-directed deployment of attention is assisted by the 
highlighters mentioned earlier in this section. Recall that 
these components propose proto-objects as candidates for 
attention and therefore determine which objects will be 

                                                             
1 Object locator constructs a priority map in three steps. First, following 

Bouma’s law for visual crowding (Whitney & Levi, 2011), object locator 
generates Marr wavelets centered at each tracked object’s location, scaled 
so that the sizes of the suppressive fields increase as those objects enter the 
periphery. Second, since untracked stimuli produce visual crowding at a 
weaker rate than tracked stimuli (Whitney & Levi, 2011), for each proto-
object, we include the negative component of a wavelet whose amplitude is 
set to 20% of that for tracked objects. Third, Holcombe, Chen, and Howe 
(2014) report a general cost for having more tracked objects. We account 
for this effect with long-range suppression in the visual field, implemented 
as a constant value (0.04 in the model) subtracted from the entire visual 
field outside of each tracked object’s enhanced region. 

 

stored in vstm and tracked by object locator. There are three 
highlighters, one of which is task specific and the other two 
are generally important for tracking. First, color highlighter 
is used to identify targets and queries about objects in the 
multiple-object tracking videos, indicated by objects 
changing color in the videos.  

The other two highlighters propose proto-objects 
corresponding to currently tracked objects. The crowding 
highlighter proposes each tracked object as a candidate for 
attention and includes as information the distance from each 
one to the nearest other proto-object. This value provides a 
measure of crowding and is based on the finding that 
tracked objects draw attention when they are visually 
crowded and in danger of being lost (Iordanescu, 
Grabowekcy, & Suzuki, 2009; Zelinsky & Todor, 2010).  

The maintenance highlighter proposes maintaining 
attention on the object that was last in focus. If attention 
remains on the same object over a period of time, this 
component computes its motion trajectory from location 
changes over a window of two to three cycles. Additionally, 
maintenance highlighter detects occlusion events, where the 
focused object is partially or completely occluded by 
another object (e.g., Figure 3A). When the attended object is 
occluded, the component predicts the focused object’s 
position based on its recorded trajectory. This information 
lets object locator update its priority map to enhance the 
object’s predicted location (the off-center, red circle in 
Figure 3B), improving its ability to continue tracking the 
object after the occlusion event ends. 

The final component, target object guesser, records the 
model’s responses in the multiple-object tracking task. This 
component reports whether the model considers a probed 
item to be a target (tracked) or a distractor. 

The model’s attentional strategy is a priority list over the 
elements in accessible content. The highest priority is to 
focus on new object-files for storage in vstm. Below that, 
the strategy prefers proto-objects, which enables encoding 
them into object files. The preferences for proto-objects are 
ordered with color highlighter first, which ensures that 
targets are initially encoded and that probes are noticed 
when objects change color. The next highest priority is to 
maintain attention on a crowded target, one whose distance 
to the nearest other proto-object has fallen below a crowding 
distance threshold. The third highest priority is to attend to 
whichever target is the most crowded—the one with the 
lowest crowding distance. This ordering enables goal-
directed deployment of attention to objects that are in 
danger of being lost, and it handles competition between 
simultaneously crowded objects. Once an attended object is 
endangered, attention will stay on it until the distance to 
nearby proto-objects exceeds the crowding threshold even if 
other targets are also in danger. 

In summary, the model consists of eight components 
(Figure 1), four of which are new and one of which was 
substantially changed. Two components are task specific: 
target object guesser and color highlighter. The model 
includes three free parameters, two in object locator1 and 
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Figure 3. A: An occlusion event. B: Part of a priority 
map, updated with an attended object’s predicted location, 
shown as the off-center darker red circle. 
 



the crowding distance threshold, which indicates when 
targets are too close to other proto-objects. In the next 
section, we report an experiment that supports the validity 
of this model in the context of multiple-object tracking.   

Evaluation 
We evaluated the computational model by running it on 
MOT videos similar to those used in Luu and Howe’s 
(2015) Experiment 1. In that work, participants tracked 
either two or four targets with either predictable or 
unpredictable motion trajectories. Luu and Howe’s key 
finding was that people more accurately track objects with 
predictable trajectories than with unpredictable trajectories, 
but only in the two target condition. The model in this paper 
accounts for this effect, showing that goal-directed 
deployment of attention can be used to predict a target’s 
location from its past trajectory. This ability enables 
tracking a single target through an occlusion, and when 
multiple targets are simultaneously crowded, they compete 
for attention. This competition for resources means that task 
difficulty increases with the number of targets.  

Experiment 
In each trial of Luu and Howe’s experiment, two or four out 
of eight total disks were highlighted in red to indicate that 
they were the targets. Afterwards, all disks turned black and 
the disks moved for 5.5 s while participants fixated on a 
center cross. During this time the disks could occlude (i.e., 
pass through) each other. At the end, two disks were 
highlighted in sequence, and participants indicated whether 
each one was a target. Each highlighted disk had a 50% 
chance of being a target, and participants needed to respond 
correctly on both for the trial to be coded as correct.  

There were two movement conditions for the experiment. 
In the first condition, every disk moved predictably in 
straight lines and changed direction only after bouncing off 
the edge of the display. In the second condition, the disks 
moved similarly, but every 300–600 ms, they would 
randomly change direction. This unpredictable movement 
was expected to reduce the reliability of any effort to 
compute and utilize motion trajectories. 

At the beginning of the study, the motion speeds for each 
participant were calibrated to determine the speed where the 
participant achieved 75% accuracy. Calibration occurred 
separately for two and four targets and used only predictable 
motions. Afterwards, participants were tested over 120 
randomly generated trials, 30 in each condition (number of 
targets × motion predictability), with conditions interleaved.  

Luu and Howe reported data from 15 participants. Their 
results found, unsurprisingly, that tracking two targets was 
easier than tracking four, as indicated by a much higher 
speed when calibrating for two targets. Importantly, they 
observed a significant interaction between the number of 
targets and motion predictability. Pairwise comparisons 
indicated that predictable motions were easier than 
unpredictable motions for two targets but not for four 
targets. Luu and Howe proposed that object tracking is 
sensitive to motion trajectories for two targets, but less so 
for four targets, which is in line with findings by Fencsik, 
Klieger, and Horowitz (2007).  

Model 
To evaluate the computational model using Luu and Howe’s 
experiment, we randomly generated 120 trial videos each 
for 15 virtual “participants” (the model was the same in 
each case, so only the trial videos varied). The videos 
matched the description in the paper as closely as possible 
with five minor exceptions. 

(1) There was no fixation cross, but center fixation was 
enforced in the model. 

(2) It was impossible to match to the original study’s 
display size (15° x 15°) because the model does not 
perceive the display from a quantifiable viewing 
distance. However, the study’s proportion of disk 
size to display size was maintained. 

(3) Videos were constrained to begin and end with all 
disks at least one radius apart (such constraints are 
common but were not mentioned in the paper). 

(4) To save simulation time, disks were highlighted for a 
shorter duration. 

(5) Disk colors differed from the original, which was 
incidental. 

The model’s crowding distance threshold was 1.6 
diameters, meaning an attended target would need to be at 
least this distance away from all other disks before the 
model could swap attention to another target. 

Results  
The calibration phase of the experiment differed slightly 
from Luu and Howe’s approach. Because the model was 
held constant across virtual participants, we calibrated the 
speeds only once. We found that to ensure roughly 
equivalent accuracy close to 75%, the speeds were eight 
pixels per cycle for two targets and four pixels per cycle for 
four targets. 

Figure 4 displays the results for each condition. A two-
way ANOVA with set size (two vs. four targets) and 
predictability was conducted. There was a significant main 

 
Figure 4. Simulated accuracy across conditions. Error bars 
are standard error. Speeds were calibrated separately for 2 
and 4 targets to achieve about 75% accuracy. 



effect of predictability, F(1,56) = 14.3, p < .001, indicating 
that accuracy was higher with predictable trajectories. There 
was also a significant interaction between set size and 
predictability, F(1,56) = 4.8, p = .032, indicating that the 
effect of predictability was greater for two targets. Unpaired 
comparisons confirmed that predictability had a significant 
effect on accuracy for two targets, M = 79.8% (predictable) 
vs. 68.9% (unpredictable), t(28) = 3.91, p < .001, but not for 
four targets, M = 75.3% (predictable) vs. 72.4% 
(unpredictable), t(28) = 1.23, p = .230.  

Discussion 
The model’s results matched the human data, which 
suggests that the model accounts for two key findings. First, 
as evidenced in the speed discrepancies during the 
calibration phase, tracking two targets was easier for the 
model and for people than tracking four targets. Notably, 
increasing the number of targets increases both the number 
of possible occlusion events and the potential for 
simultaneous crowding. These effects are important for the 
model, which explains errors as resulting in part from 
failures to attend to targets during occlusion. As a result, 
slowing object movement reduces the number of occlusions 
and contributes to the ability to successfully track targets.  

The second and more important finding is that the model 
more accurately tracked objects that moved predictably than 
those that moved unpredictably, but only for two targets. To 
understand this, we have to describe why the model could 
track some objects through occlusion events when the 
trajectories were unpredictable. Recall that objects changed 
direction only every 300–600 ms, or 12–24 cycles in 
ARCADIA, and that the model calculates motion 
trajectories over a 2 cycle window. As long as a target 
maintains course through the occlusion and the two cycles 
before it, tracking should work perfectly. In practice, this 
means that the unpredictable trajectories only disrupt a 
small proportion of occlusion events. 

As an explanation, the model suggests that there are two 
sources of error: missed occlusion events and unpredictable 
trajectories for attended occlusions. With four targets there 
are more missed occlusion events due to simultaneous 
crowding than with two, so proportionally that has a larger 
effect on the error rate than the unpredictable trajectories. 
This difference explains why unpredictable trajectories are 
more harmful with two targets than with four, and the 
combination of this with the overall small proportion of 
occlusion events disrupted by unpredictable trajectories 
explains the lack of a significant effect with four targets.  

General Discussion 
The model demonstrates the critical role of goal-directed 
visual attention in object tracking. Although attention is not 
always needed to update target locations, it provides key 
information to aid in tracking targets that are in danger of 
being lost due to visual crowding. In the reported model, 
attention provides a target’s motion trajectory, which 
enables tracking through occlusions. 

One explanation for how people track multiple objects is 
provided by the multifocal view of attention (Cavanagh & 
Alvarez, 2005). Proponents of this view have argued for two 
theoretical limits on attention. First, attention may be a 
limited resource that must be distributed among targets 
(Holcombe & Chen, 2012), which makes tracking more 
difficult when targets are crowded simultaneously and must 
compete for attention (Srivastava & Vul, 2016). Second, 
attention may be subject to spatial interference between 
neighboring targets (Franconeri, Jonathan, & Scimeca, 
2010), which makes tracking more difficult when targets are 
nearer to each other (Shim, Alvarez, & Jian, 2008; 
Holcombe, Chen, & Howe, 2014).  

The reported model offers a competing explanation that 
distinguishes between serial attention to a single object, 
which is used to bind features and compute motion 
trajectories; and parallel enhancement of multiple object-
locations, which is used to track objects. These separate 
mechanisms account for both apparent limits described 
above. First, tracking difficulty increases when targets are 
simultaneously crowded because they compete for the serial 
focus of attention. Second, difficulty increases when targets 
are near each other because the parallel tracking process 
uses center-surround suppression, with an enhanced region 
and a surrounding suppressed region at each target’s 
location. When two targets are close such that one’s 
suppressed region overlaps the other’s enhanced region, the 
enhanced region shrinks and there is a greater chance of 
losing the target. Additionally, difficulty increases with the 
number of targets and with object speed (Alvarez & 
Franconeri, 2007) because these manipulations increase the 
frequency of events where targets are simultaneously 
crowded or targets interfere with each other.  

Although there are other computational models that have 
been applied to MOT, the reported model provides a novel 
explanation. Oksama and Hyönä (2008) relied solely on 
serial attention and Kazanovich and Borisyuk (2006) relied 
entirely on multifocal attention. Srivastava and Vul’s (2016) 
Bayesian, multifocal model is similar to ours in that it 
distributes attention to visually crowded targets, which lets 
it predict greater tracking difficulty when targets are 
crowded simultaneously. However, their model makes no 
link between attentional distribution and computing motion 
trajectories. Additionally, the model cannot account for 
spatial interference between targets. Finally, their model is 
disconnected from video input, and it abstracts away the 
underlying correspondence problem. 

In this paper, we demonstrated the role that goals may 
play in object tracking. In particular, the model’s implicit 
goal to track targets enhances its ability by influencing 
where it attends. That is, selecting an object as a target 
recruits processes that monitor crowding and maintain focus 
when that target is endangered. Additionally, we note that 
the information made available by attending to an object is a 
form of indirect influence by the goal on visual processing 
(e.g., during the creation of the priority map). In the future 
we intend to explore other cases where the goal-directed 



deployment of attention interacts with perception and 
eventually with motor control.  
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